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FINITE ELEMENT METHODS FOR PROBLEMS

IN DYNAMIC ELASTICITY

Lois Mansfield

ABSTRACT

Finite element methods which are explicit in time are given for both
the linearized and nonlinear problems in dynamic elasticity. 1In both cases
the systems involved are written as first order hyperbolic systems. Con-
vergence is proved for both the semi-discrete and discrete finite element

_methods for the linearized problem, and stability is proved for the

semi-discrete finite element method for the nonlinear problem.
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I. Introduction

In this paper we consider finite element methods to solve both the
linearized and the nonlinear problems in dynamic elasticity. We are
particularly interested in finite element methods with explicit time
discretizations. Although the finite element method is inherently im-
plicit, the use of explicit time discretizations in nonlinear problems
produces a linear system which is independent of time to be solved at
each time step. Thus, although the mass matrix must be factored, this
factorization needs to be done only once. Alternatively, the linear
system Mx = b, for M the mass matrix, can easily be solved using a
few iterations of SOR, since the solution at the previous time step
provides a very good initial approximation.

In the linearized problem in dynamic elasticity one seeks to find

u and ¢ such that

2
SGi. 3 uy
(L X, + fi =p— in © ,
It
where
(2) o=Eg
and
Ju ou,
1 ]
= Ao 4 —
(3 €4 2(8xj + 5 ,
subject to the initial conditions
(4) u(x,0) = uy(x  , u (%0 =y, x .

Throughout we shall take the boundary condition to be

(5) u=0 on o .




Here u 1is the displacement vector, J and € are respectively the stress
and strain tensors, E 1is Hooke's tensor, p is the density, and f is
the external force. In (1) we have adopted the summation convention that
the repeated subscript j 1in the first term indicates an implied summation
over j.

To make exposition easier we shall give our results for the one dimen-

sional scalar model problem

(6) utt = uxx + f

All of our results, however, have immediate extensions to (1) - (3).
The system (1) - (3) has been linearized in that the actual strain-

displacement relations

AR S | a
(7) €. . 2(3a,+ .+

have been replaced by (3) under the assumption that the displacements

u; = x, - a, are small enough that second order terms in (7) can be

neglected. For large displacements one also must distinguish between
Lagrange or undeformed coordinates a; and Euler or deformed coordinates
X - In Lagrange coordinates, one obtains
2
3 Bui 3 uy

(8) (8, (8, +<—)) + f. = p
Baj ik ik Bak i Btz

along with (2) and (7), where S 1is the second Piola-Kirchoff stress tensor
and Gik is the Kronecker delta. Again, we shall give our results for the

one dimensional scalar model equation

(9a) (o) +E=u

(9b) o= u ¥ %(ux)2 i
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These results have immediate extensions to (7) - (8).

The method of solution used in this paper is to write (6) and (9) as
first order systems. For (6) we prove the convergence of semi-discrete
and discrete Galerkin approximations. Except in special cases, e.g.
linear finite elements in any dimension and smooth splines in one dimension,
all on nearly uniform meshes, one obtains one order less than the optimal
rate of convergence in the semi-discrete Galerkin approximation. By
nearly uniform meshes, we mean meshes which are obtained by starting
with an arbitrary coarse grid, or triangulation, but then always refining
these intervals, or triangles, uniformly. ‘

We prove convergence of the dis¢rete Galerkin approximation obtained
by using the staggered (half-step) variant of the leap-frog method.

In addition, we show that the third order Runge—Kutta method applied to the
semi-discrete system is stable, and thus convergent with third order
accuracy in time (since stability + consistence = convergence). In

the same way, it can be shown that the second and fourth order Runge-Kutta
methods are not stable for semi-discrete Galerkin systems.

In section 3, we write the nonlinear problem (9) as a first order
system. We show that the semi-discrete Galerkin approximation to this
system is stable. This follows from the fact that the system conserves
energy.

It has been shown in [1] that the optimal rate of convergence is
obtained in semi-discrete approkimations to second order hyperbolic
equations. However, in elasticity it is the stresses which are of the most
interest. Since the stresses are derivatives of the displacements solved
for in the second order problem, the same oréer of convergence is obtained
for the stresses in either method, except in the special cases noted above
where the solution obtained by the first order system will have a higher

order of convergence.




Engineers [2] have usually worked with the second order system. Since
the amount of work needed to obtain the stresses at mesh points seems to
be roughly the same in either method, further analytical and experimental
work needs to be done to compare these two methods. Explicit finite
element methods for hyperbolic equations have been considered previously

by Gekeler [4] and Mock [10].

II. The Linear Problem

We let w = U, 0= ug, and write (6), (4), and (5) as

LA + f
(10)
o, = v in (0,1), £t >0

subject to the initial conditions

Buo
(11) w(x,0) = u;(x) s 0(x,0) = T (X =0 (0,
and the boundary condition

(12) w(0,t) = w(l,t) =0

For H a Banach space with norm | and v:[0,T] ~ H Lebesque

"

measurable the following norms are defined

T 2 3
vl = ([T lve,e ]t a0
L7(0,T3H) 0 H
and
v i = swp |vCL,oll, .
L”(0,T;H) 0<t<T H
Let
LP(0,T;H) = {v:[0,T]>H: ||v]| <@}, p=2,®.
LP(0,T;H)
Throughout we use || ° I to denote the usual L2 norm over I = (0,1).
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Choose finite dimensional subspaces Vh c Hé(o,l) and Sh (ad Hl(O,l).
The semi-discrete Galerkin method we consider is: find W € LZ(O,T;Vh) ,

oy € LZ(O,T;Sh) such that

N

ow 00 ow ow
(13) (_a_tﬁ(”t)"ﬁh) - (T)—E—r—’(-,t),?rh) + (oh(-,t)gx——}l) +(§£("t)’8h)

= (£(,8),%) all (¥ ,05;) €V, x5, ,t>0.
(14a) (wp (+,0),@) = (uy,@) , all @ eV, ,
(14b) (0,(+,0),5,) = (07,;) . all Ces

We assume that the subspaces Vh and Sh have the following approximation
properties. There is some q; > 2 such that if veHr(O,l)n Hé(O,l),
2 <r«< a4, then there is some v, €V, such that

(15) v-v, || <ch v , k=0,1,
v #(0,1) 1" (0,1)

where C 1is independent of v and vy There is some q, 2> 2 such that

if peHs(O,l), 2<s < s then there is some Py, € Sh such that

(16) ” p_ph” k 0 i C hs” P “ , k =0,1,

85 (0,1)

£

where € is independent of p and ph.




Theorem 1. The semi-discrete Galerkin method defined by (13) -

2
(14) has a unique solution v%leLz(O,T;Vh), Oy€L (O,T;Sh). If the exact
(w,&) to (10) -(12) satisfies weL (0,73H7(0,1)),
20/t €L.2(0,T38%(0,1)),

solution
/3t € L2(0,T;H(0,1)), and ce L7(0,T;H%(0,1)),

then there exists a constant C = C(T) such that

! 3

2
an w12, + {lo=o, 112 ) ¥ <
L*(0,T;L°(0,1)) L7(0,T;L7(0,1))
where U = min(r~1l, s-1) and C is independent of h.
Proof: Existence and uniqueness follows from the fact that (13) -

(14) are equivalent to an intial value problem for a system of ordinary

differential equations, which can easily be shown to possess a unique so-

lution.

Let

where W, € Vh’ th Sh satisfy (15) and (16) respectively.

From (13) and (10)

ow

a A 8 ~ ~
(18) (ﬁ(',t),wh) - (—%(-,t),oh) + ('l’(',t),gx—h) + (%—%(-,t),gh)

= G- (+,0,8) - Go0-5)) (+,0),8,)

3 - ' ~ 5 ~ o
- 5;‘(O-Gh)(',t), wh) + ( g;(w-wh)(',t), Ch).

Choose &, = ¢, 8h = -, This gives




Lo, %+ Sl ve,o 17 = 2 ¢, 0),0)

+ 2G(0-6,) ¢+, 0),¥)

- 2G5(0-8,) (+,),8)
- 2GEE=) ¢, 0,0

Integrate from t =0 to t =§ to get,

loC.oll 2+ 1ve,oll % < 1o¢,0 12+ | ve,0 |2

3w, —w,)
h ¥h
+2T el 2 l5e— Il , 9
L (0,T;L7(0,1)) L"(0,T;L"(0,1))
3(0-6,)
h
+2/T ||y | . 9 Ilg;—————-ll 9 5
L"(0,T;L7(0,1)) L7(0,T;L°(0,1))
(c-G,)
£2/T il =,
L (0,T;L(0,1)) L”(0,T;L"(0,1))
3 (w-w, )
+2/T |lo] - _-_7;11_” s o
L (0,T;L°(0,1)) x L“(0,T;L°(0,1))
2
< |l 6,0 1% + [0 |
3 (w-w. )
2 n 2
+ 3o ll°, + 4T 50— |
© £°¢0,T7;1.2(0,1)) ot £2(0,7:12(0,1))
3(o-3a, )
2 )
+ 3|7, + 4T|| ———— ]|
£°(0,7;1.2¢0,1)) ot £2(0,7;1.2(0,1))
I I’ 2 2 +4T|| 3 | 2 2
L7(0,T;1°(R)) x L°(0,T;L°(0,1)

Now take the sup over 0 < £ < T to obtain

7=




<||¢|| vl 2

2(0,1;15(0,1)) L7(0,151.2(0,1))
3 (w-wy)
< T, + VT {[u(e, 0+ 2/ T "FllL2<o,T;L2<0,l>>
B i ST R '
CTA 20,10 0,0 10,1317 0,1))
a(w—w )
+ 2/2T || “

L (0,T; L (0,1))

The inequality (17) now follows from the triangle inequality and (14).
Similarly to the results of Dupont [3] for u, + u = 0 and the
results of Lesaint [8] for positive symmetric hyperbolic systems, we obtain
one less than the optimal order of convergence. In [9] it was shown that
for certain subspaces, namely linear finite elements and smooth splines on
nearly uniform meshes, the last two inner products in (18) are really one

order of magnitude smaller than predicted by the straightforward use of
the Schwartz inequality and (15) and (16). The easiest way to see this
is to compare these inner products with what corresponds to the local

truncation error in finite difference analysis. For details, see [9].

In the mathematical finite element literature the usual discrete time
method which is analyzed is the Crank-Nicholson method. It is straightforward
to show that this method when applied to (13) is second order accurate in
At and has the accuracy in space proved in Theorem 1, independent of any
ratio of At to h. We omit the proof. Because we are interested in using
explicit methods on the nonlinear problem, we analyze a staggered steﬁ

m
leap-frog method. Let T = AtN for some integer N and v = v{e,mAt).

This method can be described, for 0 <n <N, as

Bwn
(19a) (0n+%8)=(0n—%8)+/\t(—-—~8) all G, €S
a n °°h h *°h 5% ’ h ’ h€ °n
~ + nt: . ~ -
(19b) @Ihe) = whLe) - At *,——) +ALETE, 8 , all @ v,
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where for n = 0, (24a) is replaced by

Swo

' % ~ 0~ At h » A
(193 ) (Oh’ch) = (Oh’ah) + _2_(5?—’01,1) > all Oh € sh s

and wO and GO are obtained from (14). On the space Vh we make the

inverse assumption that

G .
(20) No ll sz llell , a1l ¢ev,

where the constant o 1is independent of ¢ and h, This assumption 1is
satisfied by all finite element subspaces commonly in use, provided some
regularity is imposed on the manner in which the mesh is refined. For
example, in one dimension the ratio of the lengths of the largest to the
smallest interval should remain bounded as h goes to zero. For triangu-
lations in two dimensions there is an additionél requirement that the

smallest angle in any triangle stay bounded away from zero.

Theorem 2. Let (w,0) be the exact solution to (10) - (12) and

{wn]lq cVv

nHN
W1 Ve 10 TH o C 8

h be the sequences defined by (24). Suppose

that weL®(0,T;HY(0,1)), o€L1®(0,T;H5(0,1)), sw/dt eL?(0,T;07(0,1)),
30/5t €12(0,131°(0,1)), (3w er?(0,130%(0,10), G o er’(o,130%(0,10),

k = 2,3. Suppose that At is chosen so that

alt
(2D o <1 ,

where o 1is defined by (25). Then there exists a constant C = C(T) such

that

a 2 U
(22) (max || '] 12 + max Hgn—%_og-é |5t S el

1<n<N 1<n<N

where U = min(x-1,s-1).



h
and (16) respectively. From (19) and (10),

Proof: Let ¢k = wk ~§, 1pk'*'% = Ok+%_8k+%’ where ﬁh and 8h satisfy (15)

@Hgk,0 - @R ) 4 Atw”%,—-) + 8e(9K,8,)
kL k-3, ~
- e @ Gy - -G 6

- At(—a?;(o-ah> 6.) + At(;;(w-ah), 6,)-

Choose w, = ¢k+l + ¢k, 6h = —(wk+%+¢k-é). This gives
I T T L I L e YT e R I

- ae(e®, 0 R + et PRy - ae gk oh - ae 0,0 49

where

™

1]
™
4+
m

kel <k
x k. k Kd Wt ), WLk Wy ‘Wh)
= w — —————————————y
1 2 At At ’

h

_1 _ ~k+% k-5
sk 6k+5k=(0k_crk'*'%-ok%)+ ck"%—oké—o'n -Gy ° > ,
1 2 t ' At At

v =§;(o -0h ).
Summing from k=1 to k =n

and using the Schwartz inequality along with
the inequality ab < (€a2/2) + (b2/28) for € positive gives

CONNN Kk R ] rt

X

+ e @™E, "

n
B2 1l 2+ aecdoly S ae )l
k=0

T k| 2
+Zae ) (6417 +z,_Atz||Yk||l+——-AtZ||vll
k=1 k=1 k=1

. N )\ P




mates hold for

where 0 < B < 1. Using (24b) and (24a') we obtain

@ et IZ+ 2B 112 = 110 1% + 2l w0 )17 - acwtoh + aew®,0D)

+ 0e(e0,050%) + ae 30, uEn® - e (O, uEn®) - e, 0 400

where
80 = 80 Ao 2( % )) + (oé o"‘5+00 0
=0y + 6 (o - e oh) .
Then
k+3 n+3 3
2 1 ek .2 -T,2¢ 3 2
(25a) 6317 = 17 1 g {50 - E5eDh 25 man)
t ot
kH 3
3 (t 3o 2
< K(ar)” f | <=0 ||
- k-t at>
1 t gkt
S N b 2(0-5,) (,D)dT < 7= b I 3c0-5) ¢,y |}
0 352 2
0]
(25¢) N8 1l < K(At)2 fzo | 5=CHol

where K is some constant which is independent of At and o. Similar esti-

k k 0
€1:€5s and 62.

Substituting (24) and (25) into (23), and using (20) gives

2 ' ; .
e I R et 3 (K e R

> 325 |2
K[(At’4 I351% oy 1S CNE33,
ot L™ (0,T;L (031)) 3t L (0,T; L 0,1)) 3t L°(0,T;L°(0,1)
+ 1 355y + )| St |1 max o |l
(-9 |L2(0 T; L o,1n) ot L (() T; L (0,1)) 0<k<N ax n

+ omax |2 @35 2] +pmax [[o°IF +8 max ||y 2
ox h 1<k<N 0<k<N-1
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Taking the sup over k and using the triangle inequality along with (15)
and (16) gives (22) and proves the theorem.

The optimal order of convergence in h can be obtained for certain
subspaces in the same way as for the semi-discrete approximation. We now
show that the stability requirement (20) is the same as that given in Bathe
and Wilson [2, Chapter 9). For the general dynamic elasticity problem,

the system (10) becomes

L T*g + f
(26) o
9 T Tw

For (26), the inequality (20) becomes

ol < 5ol , all ¢e v,
or
o _ I ¢ |l
n = sup : .
gev, Il ol
Let {¢i}2=1 be a basis for Vh' Then for ¢h€Vh,
n
¢h - .Z ai¢1
i=1
so that
2
” T¢ II _ aTKa
2 - T = kmax
!' ¢ ” a Ma
and thus
(27 % - ‘/Amax
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Here K and M are respectively ghe "stiffness" matrix and the 'mass"
matrix, and xmax is the largest eigenvalue of AMv = Kv. This agrees
with what Bathe and Wilson, [2, page 353], determined for the centered
difference method applied to the second order equation.

We now show that the third order Runge-Kutta method when applied to
the semi-discrete Galerkin approximation is stable. Convergence can then

be shown by applying the classical theorem that stability plus consistency

equals convergence. The same techniques can be used to show that the
second and fourth order Runge~Kutta methods applied to the semi-discrete
Galerkin approximation are unstable. The third order Runge-Kutta method

can be written as the three step procedure (see [6, page 43])

By
un+ S %$(u,)n ,
- n+2 o 2At, ,.n+i
(28) u 3 = u +—3—(u) 3,
2
un+l - un + %5(3(u,)n+~5 + (u,)n)
n n,T

n n n P
Let u be the vector [a ,8 17, where oy and Bj are the coefficients

in the expansions

m m
~ 1 ~ 2
where {¢i}i=1’ and {wi}i=1 are orthonormal bases with respect to the inner

product (-,+) for vy and Sy respectively. For the system (13), (28) can

be expressed (for f = 0) as

2 3
(29) oo 4 Ated® +%)—B2un + (Az)‘ Bou”

where




where C 1is the rectangular matrix with elements ciJ ((wi) ,¢ ).

Note that

TR P T L T S [ ol e

Theorem 3. Let {gk} be the sequence defined by (29) where 50 is

obtained from (14). Then
+1 0 2
Ma™ 0 < M I
provided that

(30) 3-25 Nell < 2

Proof. Take the l« |l norm of both sides of (29). Because
B is skew-symmetric, most of the terms on the right side drop out and we
are left with

4
M2 = e - L2 At + (A” lle3® [1) 2

2
N S el LA L L

< a2

if (30) holds. The theorem now follows by recursion.

III. The Nonlinear Problem

We let w=u g = u_ + %(ux)2 and write (9), (4), and (5) as

t’
w, = §~((l+u oy + f
t 9x x i
(31)
Oy = (1+ux)wX in (0,1) , t>0,




subject to the initial conditions
Buo 3u0 2
(32) w(x,00 = uy & , ox0 = 57 +%<§x—) =0,&® ,

and the boundary condition
(33) w(0,t) = (w(l,t) =0

To obtain the second equation in (31), we needed to assume that we could
interchange time and space differentiations..

The system (31) - (33) can be written in weak form as

(34) W (+,t),®) = (0,(+,1),0) + ((Tru (+,£))0(,t),@.)
+ ((Hu CL,)v (,0),0) = (£(,8),®) ,

(35a) W(,0),& = (u,®) ,

(35b) (©(+,0),8) = (07,0)

all (G,8)en%)(o,1)x 1l(0,1).

The semi-discrete Galerkin method we consider is: find wh( LZ(O,T;Vh),

2
OhE L (O,T,Sh) such that

Bwh Boh . Bﬁh
(36) (ﬁ—('at)aah) - (—3—t_—(.’t) )Oh) + ((1+ux(.9t))oh(.9t) ;W)
aw

(@ (4,0)=(,8),0,) = (FC,0),9)

( 373) (Wh(' ,O) ’Gh) = (ul’ah) ’
( 37b) (Oh(’so)sgh) = (O'l,ah) s

all (wh,oh)c thsh .




Theorem 4. Let (w,0) be the solution to (34) - (35) and
(wh,Gh) be the semi-discrete Galerkin solution to (36) - (37). At any

time & such that 0 < E < T
(38) (e )| 2+ 1 oc,8) 12 < 2]l w(e,B) [+ || o0 {|%

2
sarlell?,
L7(0,T;L7(0,1))

(39) T 0 12+ oo 12 < 20wy (500 112 + Jloy 00 115

2
var | ]2, )
L%(0,T;L%(0,1))

holds for the forced vibration problem. For free vibration problems (f=0),

one has
@0y fwene 12+ oo 12 = w0 12+ o017,
GO e 1 oy he 12 = a0 12+ oy ol ?
0<E<T.
Proof. Let Ww=w, O =-0 4n (34). This gives

Lo 12+ lloc,o |12 = 26,0, .

Integrate fromt = 0 to t =& to obtain

-16-




L,y 12+ [To¢,0 112 - w0 |2 = o0 |1

2 15 (£(e,0),w)

0
<2 /T ||lv]| el
- | L°°(0,T;L2(O,l)) LZ(O,T;LZ(O,I))
2 2
<3 lwll ,  +orfelll, :
Lm(O,T;L (0’1)) L (OaT;L (091))

Taking the sup over all & such that 0 < £ < T gives (38). The inequality

(39) and the identities (40) and (41) are derived in the same way.

Note that the identities (40) and (41) indicate that both the weak
system (34) - (35) and the semi-discrete Galerkin system (36) = (37) con~
serve energy (for £ = 0). This was true also of the linear problem.

It has been observed [11, page 128] and [5] that the use of leap frog
in nonlinear problems can cause difficulties because of nonlinear instabi-
lity. TFor a system like (31) where the semi-discrete approximation is
conservative this nonlinear instability seems to occur only when the
coefficient 1 + u oscillates around zero. See [5, page 207].

One can avoid this instability by adding a small dissipative term to the

left hand side. Thus, one replaces the mass matrix M by M + a(At)ZK,
where K 1is the stiffness matrix, and o 1is some constant. If this is done
only to (19b) the procedure can be thought of as adding artificial damping.
It can be shown that this does not reduce the order of convergence. The
addition of artificial damping can also be used as a way of treating shocks
analogously to artificial viscosity for inviscid fluid flows. An excellent

discussion of the motivation behind artificial viscosity is given in Lax [7].

-17-
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